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Abstract

Experimental natural convection Nusselt numbers are reported for a cubical\ air!_lled cavity that has one pair of
opposing faces isothermal at di}erent temperatures\ Th and Tc\ the remaining faces having a linear variation from Tc to
Th[ Average Nusselt numbers at the cold face are given for Rayleigh numbers Ra equal to 093\ 094\ 095\ 096 and 097\ and
for three angles of inclination 8 of the isothermal faces from horizontal] namely 8 � 9\ 34 and 89>[ The 84) con_dence
limits on the measured Nusselt number Nu are typically 0) of the Nu[ Unexpectedly\ two Nusselt numbers were found
at 8 � 9> and Ra � 094\ depending on the initial conditions[ The results are intended to provide data for a recently!
de_ned benchmark problem in CFD[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

Ahp area of the electrically!heated plate\ nominally
equal to L1

cp speci_c heat of air at constant pressure
` acceleration due to gravity
k air thermal conductivity
L distance between the hot and cold faces of the cubical
cavity "see Fig[ 0#
LTP linear temperature pro_le
M number of a set of experiments to measure the same
Nusselt number
Nu Nusselt number\ � 0¦qconvL:"kDT Ahp#
n local slope of graph of log Nu versus log Ra
P air pressure
q heat!~ow] with no subscript\ q is the total heat ~ow
"convection\ conduction\ and radiation# across the
cubical cavity from the hot to the cold plate^ qb is the
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heat ~ow from the electrically!heated plate to the back
plate\ qe is the electrical power delivered to the elec!
trically!heated plate\ qs is the value of q when the air in
the cavity is stationary] i[e[ there is no convection
Ra Rayleigh number\ � `bDTL2 cpr

1:"mk#
T absolute temperature] Th and Tc are the temperatures
of the hot and cold plates respectively "Fig[ 0#^
Tm\ �"Th¦Tc#:1\ is the mean ~uid temperature at which
property values in Nu and Ra are to be evaluated[

Greek symbols
b coe.cient of thermal expansion of air
DT Th−Tc

m air viscosity
r air density
8 angle of tilt of hot face of cavity from horizontal "see
Fig[ 0#[

Superscripts
� relating to Ra�\ a special nominal value of the Ra\
like 093\ 094\ 095\ etc[

0[ Introduction

Benchmark problems have an important role to play
in computational ~uid dynamics "CFD#[ Once solved\
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they form a reference point for code development and
validation[ A benchmark problem should be capable of
simple statement*yet it should challenge the best current
codes\ which means that new benchmark problems need
to be de_ned periodically[ Preferably the new problems
should be physically!realizable\ so that comparisons can
be made with laboratory measurements[

Some popular benchmark problems have not been
physically!realizable[ A case in point is the problem of
the 1D ~ow of air in a square cavity with isothermal
vertical walls and adiabatic horizontal walls "side!walls#
ð0Ł[ Le Quere ð1Ł\ who has provided extensive solutions\
noted that {{for several reasons\ this problem could ulti!
mately prove to be without physical meaning[|| The lack
of physical meaning stems from the impossibility of the
adiabatic boundary condition ð2Ł and "since the 1D ~ow
could be unstable to 2D disturbances# from the 1D ~ow
speci_cation ð3Ł[

Despite the success of this rather unphysical problem\
there are good reasons why future benchmark problems
should be physically!realizable[ For example\ some physi!
cal aspect\ such as the possibility of 2D ~ow\ may be
missing in the fundamental equations\ or the ~ow may
be bistable and the code is converging onto only one of
the two solutions[ Such benchmark measurements would
be most useful for modelling transition and fully!tur!
bulent ~ows] short of direct numerical simulation\ it will
be necessary to model the turbulence\ and since modelling
laws for buoyancy!driven turbulence are embryonic\ the
need to test against experimental measurements becomes
paramount[

Close agreement between computed and measured
convection in cavities has not generally been found in the
past ð4Ð00Ł\ in the main because simulated and exper!
imental side!wall boundary conditions did not exactly
match[ The exception is the work of Hamady et al[ ð8Ł\
who achieved 22) agreement for the Nusselt number[
But they used their experimentally!measured sidewall
temperature distribution as the boundary condition in
the CFD code\ rather than an idealized boundary that
one would expect to _nd in a benchmark problem state!
ment[ While their _ndings constitute very useful knowl!
edge\ the method is not consistent with the basic idea of
a benchmark\ in which the model should be simply!stated
and independence of any experimental measurements2[

Because of the need for a physically!realizable bench!
mark problem and the long history of the square!cavity
problem\ it seems wise to build a new\ physically!
realizable problem on that foundation[ In a companion
paper to this one\ Leong et al[ ð01Ł examined some suit!
able problems and found the most suitable to be natural
convection in a cube with two opposing faces isothermal
and the remaining four walls "called the side!walls# hav!
ing a linear temperature variation from the cold face to
the hot face\ as shown in Fig[ 0[ They de_ned\ in fact\
three benchmark problems] one with hot "or cold# face

Fig[ 0[ Sketch de_ning the cubical cavity benchmark problem[

vertical "as in the square!cavity problem#\ one with it
horizontal\ and one with it inclined at 34>[ They rec!
ommended air as the ~uid\ because its properties are
closely!known\ because its pressure can be easily varied
"allowing a wide Rayleigh number range to be covered
with a single physical model#\ and\ _nally\ because
its low thermal conductivity means that one can achieve
the linear pro_le by making the side!wall of a good
conductor[

Leong et al[ ð01Ł described an apparatus built up to
realize the speci_ed problem\ and demonstrated the prac!
tical achievement of the linear pro_le[ Taking the average
Nusselt number\ Nu\ as the principal measured
parameter\ they suggested that the accuracy in Nu needed
to be about 0) or better for the results to be useful for
testing codes[ They described an experiment aimed at
achieving this accuracy\ and demonstrated its ful_lment
at a Rayleigh number Ra of 39 999[ Because of length
limitations\ their results at higher Rayleigh numbers were
not given[

2 The comparisons achieved by Hamady et al[ ð8Ł on a {com!
plex| benchmark are appropriate when the same research group
is doing both the CFD modelling and the experiments[ But by
keeping to {simply!stated| benchmarks\ the research community
will promote the specialization of e}orts that is needed to
advance the science[ That is\ if some workers specialize in pro!
ducing experimental results and others in developing com!
putational models\ specialized skills can be developed with gre!
ater focus\ and moreover the comparisons can be more objective[
{Complex| benchmarks that {fall!out| of a particular experiment
"in the sense that the wall!temperature boundary condition of
Hamady et al[ ð8Ł fell out of the peculiarities of their experiment#
are not only di.cult to characterize for the CFD modellers^
they also make interlab comparisons very di.cult\ because the
temperature boundary conditions that fall out of one lab|s exper!
iment are unlikely to match those that fall out of another lab|s
apparatus[
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The results at higher Rayleigh number are now given
in the present paper[ Thus\ average "cold!face# Nusselt
number results\ accurate to within about 0) error "84)
con_dence# are reported here for Ra � 093\ 094\ 095\ 096

and 097\ for each of the three values of angle 8[ The
results are compared to related computed values from the
literature ð1\ 09\ 02Ł\ and although the current literature
contains no studies that exactly matched our boundary
conditions\ these comparisons throw light on the e}ects
of 1D vs 2D ~ow and of the adiabatic vs the linear
temperature boundary condition[ Measured Nusselt
numbers at 8 � 34> were generally higher than those at
both 8 � 9> and 8 � 89>\ a rather unexpected _nding[
Another unexpected _nding was that when 8 was set
equal to 9> and Ra to 094\ we observed two distinct
Nusselt numbers\ depending\ apparently on the initial
condition of the experimental set!up[ The two Nusselt
numbers di}ered by about 09)\ and so resolving them
was within the capabilities of the experiments[ CFD simu!
lations aimed at exploring this _nding revealed that there
are indeed two solutions at the condition 8 � 9>\
Ra � 094[ "No further CFD simulations were performed
as part of the present study\ whose main function is to
provide experimental data for other studies[#

To obtain results specially!suited to CFD compari!
sons\ we departed from the usual experimental procedure
of taking measurements at many values of Ra and then
_tting a curve through the data[ Rather\ we concentrated
on making repeated measurements at "or very close to# a
few speci_ed Rayleigh numbers "denoted by Ra�#\ such
as 094\ 095\ 096\ etc[\ and then averaging the results[ This
made the results suitable for direct comparison with the
results of CFD codes\ which are generally reported in
the same way[ The standard deviation of the repeated
measurements was used in determining the random error
in the Nusselt numbers[

1[ Experiment

Most of the details of the apparatus and method are
given by Leong et al[ ð01Ł[ We provide here only a brief
summary\ adding details peculiar to the additional exper!
iments reported here[

1[0[ General layout

Shown in Fig[ 1\ the experimental cube model had side!
length L nominally equal to 016 mm[ It contained a heat
~ux meter\ an electrically!heated plate\ and two identical
{hemi!cubes|\ the latter two joining along a parting!line
to form the cube after assembly[ The {hot!plate| was
heated to about 296 K and the {back!plate| cooled to
about 299 K\ each by water streams passing through
tubes soldered to their rear faces[ The model was con!
tained in a pressure vessel\ the pressure of which is con!

Fig[ 1[ Sketch of experimental apparatus in central cross!section[

trollable from about 099 to about 0 MPa\ thus making
the Rayleigh number controllable from about 099 to
about 1×097[

1[1[ Linear temperature pro_le

Four strategies led to achieve the linear pro_le on the
side!walls[ The _rst was placing the parting!line parallel
to\ rather than transverse to\ the heat ~ow "this avoided
temperature jumps due to contact resistance#[ The second
was making the side!wall thick enough "it was 2[07 mm
thick# to ensure a linear temperature distribution[ Unfor!
tunately\ because of the constriction resistance where the
side!wall meets the hot!plate and that where the side!wall
meets the back!plate\ this linearity did not extend from
Tc to Th[ This led to the third strategy\ which was applying
a small amount of electrical heating "via an imbedded
electrical wire# where the side!wall meets the hot plate
"Fig[ 1#\ and the fourth strategy\ which was adjusting the
heating to the electrically!heated plate so as to make its
temperature equal to the temperature of the side!wall at
the corner where they meet[ With these strategies in place\
the side!wall temperature deviated from the sought linear
pro_le by less than 9[94 K[ The last two strategies meant
that the electrically!heated plate was actually at the cold
end of the cavity\ rather than the hot end\ where one
would _nd it in the standard guarded heat!plate method[

1[2[ Heat ~ow measurement

The heat q carried to the cold face from the air is
"except for radiation# the sought heat ~ow needed in the
Nusselt number[ From an energy balance\ it is equal to
the heat ~ow qb passing through the back of the elec!
trically!heated plate minus the rate qe of electrical energy
supplied to the electrically!heated plate] q � qb−qe[ The
heat qe is easily measured\ and the heat qb can be deter!
mined from the heat calculated from the e[m[f of the heat
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~ux meter\ which has been calibrated in situ[ This\ in
basic terms\ is the technique used to measure the heat
~ow q[ In fact\ the quantity actually entered into the
Nusselt number is the excess of q over the corresponding
value of q "denoted qs# applying when the air is stationary
and no convection is present[ Thus we determined the
Nusselt number Nu from

Nu � 0¦"q−qs#L:"k:AhpDT# "0#

with qs being determined when the air is stationary\ a
condition established by having the pressure low and
heating from above\ i[e[ by putting 8 � 079>[ This pro!
cedure also eliminates the radiative transfer from further
consideration[

The method for determining q from q � qb−qe has the
di.culty that if q becomes greater than qb\ qe must be
negative\ and\ coming from an electrical source\ it is
impossible to make it negative\ so the method fails[ In
our experiments we increased the Rayleigh number in
steps\ each step resulting in an increase in Nu and hence
in q[ During this process\ qb remained more or less
constant\ and thus a point was eventually reached where
q exceeded qb[ For our "original# apparatus\ this point
was reached when Ra was between 095 and 096[ To
accomplish the measurements at Ra � 096 and 097\ we
changed the heat!~ux meter\ replacing it with one of
about one!third the thermal resistance of the original
one[ "This one was one third the thickness of the original
one\ and so a circular aluminium disc was added to the
space between the back!plate and the electrically!heated
plate to make up the spacing[# As a check on the integrity
of the heat!~ux measurement technique\ the Nusselt num!
ber measurements at Ra � 095 were performed with both
heat!~ux meter arrangements\ and the Nusselt numbers
compared[ They agreed to within about 9[5)\ which
was within the experimental uncertainty of the Nusselt
number measurement[

1[3[ Settin` of Ra

In an experiment\ it is impossible to set the Rayleigh
number precisely equal to a particular Ra�\ like 09m

"where m � 3\ 4\ 5\ 6 or 7#^ it is therefore necessary to
determine the Nusselt number at this value from a set of
measurements made with Ra in the close vicinity of Ra�[
Each measurement is corrected by the factor "Ra�:Ra#n

to bring it to the desired Ra�[ Here n is the local slope of
the log Nu vs log Ra curve\ which is determined from
measurements at the next lowest and next highest Ra�]
for example if the Ra� of interest is 095\ n would be
determined from the Nusselt numbers\ Nu4 and Nu6\ at
094 and 096 respectively\ as follows] n � 0

1
log09"Nu6:Nu4#[

The error in this Nu is made up of two parts[ The _rst
is the bias error\ which is established by the errors in the
instruments and similar considerations^ it includes the
errors associated with the properties of air and the uncer!

tainty in n[ The factors entering into the bias error are
given by Leong et al[ ð01Ł[ The second component of the
error in Nu is the random error\ which is determined
from the standard deviation of the M independent
measurements of the "corrected# Nu in the immediate
vicinity of Ra�\ and from the appropriate Student|s t!
multiplier[

Choosing to make M � 07\ we carried out 07 Nusselt
number measurements at each combination of Ra� and
8[ These were at various settings for the temperature
di}erence DT\ and mean temperature Tm\ the pressures
always being adjusted to make the Rayleigh number very
close to "within 0) of# the desired Ra�[ To get the 07
measurements\ three repetitions were made at each of the
six permutations of DT � 3[4\ 5[1 and 8[6 K and
Tm � 187 and 297 K\ each repetition having a slightly
di}erent pressure[ As was explained earlier\ at Ra � 095\
two di}erent sets of measurements were made\ each with
a di}erent heat ~ux meter[ These two sets were merged
and treated as a common set\ so M was equal to 25 at
Ra � 095[ From now on\ the superscript on Ra� will be
deleted as understood[

2[ Results

The Nusselt number results are listed in Table 0 at each
combination of Ra and 8\ along with their corresponding
84) con_dence limits of uncertainty[

2[0[ Results for 8 � 89>

In Table 1\ the results at the vertical position\ 8 � 89>\
are compared with available CFD solutions of allied
problems[ The third column gives the results that Raithby
and Wong ð02Ł obtained for the square cavity in 1D ~ow
with the side!wall temperature running linearly from Tc to
Th\ which we shall denote here as the linear temperature
pro_le\ or LTP\ boundary condition[ The fourth column
gives recent solutions of Le Quere ð1Ł for the well!known

Table 0
Measured Nusselt number results at the three angular settings

Nu

Ra 8 � 9>C 8 � 34>C 8 � 89>C

093 0[13529[902 0[50329[904 0[41929[904
3×093 1[90729[906 1[54929[916 1[22629[919
094 2[49829[924 2[38129[923 2[98629[917
094 2[80529[931 * *
095 6[77229[980 7[72629[090 5[27229[969
096 04[2729[08 06[4929[10 01[8729[05
097 20[1129[32 23[4129[31 15[6829[23
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Fig[ 2[ Plot of the experimental results at 8 � 89>\ and some computed results for allied problems from the literature[ The curve marked
EXPERIMENT "2D!PC# is the present experimental result^ 1D!AD is Le Quere|s result ð1Ł for 1D ~ow in a square cavity with adiabatic
side!walls^ 2D!AD is Fusegi et al[|s result ð09Ł for 2D ~ow in a cubical cavity with adiabatic side!walls^ and 1D!LTP is Raithby and
Wong|s result ð02Ł for 1D ~ow in a square cavity with linear temperature pro_le side!walls[

benchmark problem ð0Ł of the square cavity in 1D ~ow
with adiabatic side!walls[ The _fth lists the fully 2D solu!
tions of Fusegi et al[ ð09Ł for ~ow in a cubical cavity
with adiabatic side!walls[ While all three of these CFD
solutions are for situations di}erent from that of the
problem reported on here\ they are close enough to
warrant comparison[ Figure 2 is a plot of the data in
Table 1[

In all cases\ the CFD solutions give greater heat trans!
fer than the observed heat transfer[ The CFD!computed

Table 1
Comparison of Nusselt number results at 8 � 89> with CFD results on related problems from the literature

Computed Nu for

Ra Measured Nu 1D ~ow\ square cell\ 1D ~ow\ square cell\ 2D ~ow\ cubical cell\
Cubical cell LTP side!walls LTP side!walls ð02Ł adiabatic side!walls ð1Ł adiabatic side!walls ð09Ł

093 0[410 0[64 1[13 1[09
2×093 * 1[30 2[03 *
3×093 1[226 * * *
094 2[092 2[39 3[40 3[250
2×094 * 3[36 * *
095 5[278 * 7[72 7[66
096 02[99 * 05[41 *
097 15[72 * 29[11 *

curve that runs closest to the experimental curve is that
for the 1D ~ow\ LTP case[ Since the present experiments
also have the LTP boundary condition\ it seems that the
thermal boundary condition is more decisive in _xing the
heat transfer than the whether the ~ow is 1D or 2D[
That the Nusselt numbers should be higher in 1D ~ow is
perhaps to be expected\ because the experimental cavity
has additional side!walls along which the ~uid experi!
ences additional drag\ thereby restraining total con!
vective motion[ This observation is consistent with the
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fact that\ of the top two curves\ the 2D Nusselt number
lies below the 1D Nusselt number\ an observation also
made by Fusegi et al[ ð09Ł[ It appears\ however\ that
the CFD simulations may in fact cross the line of the
experimental data\ rather than being asymptotic to it[
This as well may be explainable[ At very high Ra the
eddies are much smaller than the length!scale of the cavi!
ties\ so additional side!walls have a much less con!
straining e}ect[ At the same time\ the {real world| of
the experiments will allow for eddy motion in the third
dimension\ and hence the ~ow will be less constrained
than that in the 1D simulations^ this can lead to greater
convective motion and higher heat transfer[ Similar argu!
ments could be made with respect to the top two curves\
although it is more di.cult to say whether the curves are
asymptotic or crossing[

The CFD simulations assuming adiabatic side!walls
are consistently higher than the LTP side!wall results\
regardless of whether the latter are experimental or com!
puted[ That adiabatic side!walls produces more heat
transfer across the cell than LTP side!walls is well!known
and has to do with the more constraining e}ect of a side!
wall of speci_ed temperature as compared to an adiabatic
side!wall[ On the other hand\ that the relative di}erence
between the experimental and the 1D CFD simulations
decreases with increasing Ra is an interesting observation
that can probably be explained by the above!mentioned
additional freedom allowed in the real!world 2D situ!
ation and also by the possibility that the simulated solu!
tions calculated the steady solutions\ whereas in the real!
world\ oscillatory ~ow may easily be taking place[
Because of the latter e}ects\ it is quite possible that these
two curves will cross at higher Ra as well[ "It should be
noted\ however\ that previous studies have indicated that
the ~ow should not become turbulent until Ra is approxi!
mately 097 ð04Ł[#

To complete these comparisons\ it is instructive to dis!
cuss here the experimental data of Hamady et al[ ð8Ł\
who measured the Nusselt number for a square cell with
experimental boundary conditions consisting of an insu!
lated plexiglas sheet that provided neither the LTP nor
the adiabatic boundary condition[ Their results were
found to lie between the values in the third and fourth
columns in Table 1^ i[e[ they were bounded by the square!
cell CFD simulations for adiabatic and LTP side!walls[
For example\ at Ra � 094\ the Nusselt number from
Hamady et al[ ð08Ł "as given by their correlation equa!
tion# is 3[03\ which is roughly half way between the values
of 2[39 and 3[40 given in Table 1[ In comparing this
Nusselt number of 3[03 with the present experimental
one of 2[092\ we note that there are three reasons for the
di}erence] the di}erent cavity shape "cubic vs square#\
the di}erent side!wall materials "copper vs plexiglas# and
di}erent ways of heat sinking the side!walls into the hot
and cold plates[ It would seem that the di}erences in the
side!walls is the over!riding reason for the di}erence in

Nusselt numbers[ These comparisons underline the
importance of specifying an achievable side!wall bound!
ary condition in the benchmark problem de_nition[

As is clear from Fig[ 2\ the present experimental data
fall almost precisely along a straight line when plotted on
a log!log plot^ they are _tted by the single equation]

Nu � 9[97350Ra9[2014 093 ¾ Ra ¾ 097 "1#

to within the very low tolerance of 0) maximum devi!
ation\ which is of the same order as the experimental
uncertainty[

2[1[ Results for 8 � 9>

The results for 8 � 9> are plotted in Fig[ 3a[ The results
at Ra � 094 were found to fall into two sets\ one with Nu
approximately equal to 2[4 and one with Nu equal to 2[8[
Because the di}erence between these two sets was greater
than the resolving power of the experiments\ the di}er!
ence could not be put down to random error[ The two
sets were therefore kept separate\ and an average was
taken over each set[ These are the two values reported in
Table 0 and plotted in Fig[ 3a for Ra � 094[ There were
eight data point at Nu ¼ 2[4 and ten at Nu ¼ 2[8\ and the
errors shown are in each case based on the corresponding
number of observations^ thus M � 7 or 09\ depending on
the case[

On examining the data to see if any particular exper!
imental circumstance would decide which case "or mode#
would in fact be observed\ we found that the DT setting
had no deciding e}ect\ but the mean temperature Tm

setting had an important e}ect] generally the Nu ¼ 2[4
mode tended to be observed with Tm � 187 K and the
Nu ¼ 2[8 mode tended to be observed with Tm � 297 K[
On the other hand\ Tm was not fully decisive in deter!
mining which mode would be observed[ Once a particular
mode had developed\ the heat transfer would not change
to that of the other mode] it remained stable at the mode[

Because this result was rather unexpected and in view
of the fact that the Rayleigh number was just low enough
for the ~ow to be modelled with current commercial
codes\ we decided to simulate the ~ow at Ra � 094 with
a CFD code\ to see what light this would throw on the
phenomenon[ Prior work ð05Ð08Ł on CFD simulations of
cubical and quasi!cubical cavities heated from below
have indicated that there are a number of possible di}er!
ent ~ow patterns\ depending on the aspect ratio of the
cavity\ the Prandtl number\ the sidewall boundary con!
dition and the Rayleigh number[ Moreover\ even for a
given speci_cation of these various parameters\ the ~ow
structure may still not be unique] two or more di}erent
stable ~ow patterns may satisfy the steady!state equations
of motion[ Some of the patterns that have been described
ð05Ð08Ł are "i# single or double cells with the cell axis
parallel to one of the side!walls\ "ii# single cells with the
axis along a diagonal\ "iii# a toroidal ring vortex "also
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Fig[ 3[ Plot of results for 8 � 9 and 34>[ Dashed curve marked RH is a plot of a multi!Prandtl number multi!geometry correlation
equation ð19\ 10Ł for enclosures heated from below[

called bimodal ~ow# where ~ow rises in the central region
and falls along the walls\ or vice!versa and "iv# a tran!
sition ~ow between the last two[ These di}erent ~ow
structures may yield di}erent Nusselt numbers ð05Ł[

The details of the CFD code we used in the present
study were the same as those used by Leong et al[\ and
are described in the appendix to that paper*the air
properties being treated as constant in these particular
simulations[ The initial conditions were that the velocity
_eld was zero and the temperature was uniform through!
out the cavity\ at the mean temperature[ Only one side of

the cavity was simulated\ it being assumed that the ~ow
would be symmetric about a central plane parallel to one
of the side!walls[ "This was a signi_cant assumption\ but
as will be seen\ it did not preclude the needed result[#
Three simulations were performed\ with grid sizes of
04×04×6\ 29×29×03 and 59×59×17 respectively[ In
the 59×59×17 grid size simulations\ the solution con!
verged only very slowly\ and in an oscillatory manner\
and to achieve solution in a reasonable time\ the
maximum residual was increased to 09−3 from 09−4\
which was the value used at the other grid sizes[
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Two di}erent ~ow patterns were obtained\ depending
on the grid size[ At the 04×04×6 the ~ow pattern at the
central plane given in Fig[ 4a was obtained^ at both the
29×29×03 and 59×59×17 grid sizes\ the central!plane
~ow pattern given in Fig[ 4b was obtained[ For the pat!
tern shown in Fig[ 4a\ the average cold plate Nusselt
number was determined to be 2[771\ and for that shown
in Fig[ 4b\ it was determined to be 2[434 "this for the
59×59×17 grid#[ These computed cold!face Nusselt
numbers are very close to the two measured cold!face
Nusselt numbers "which were 2[81 and 2[40\ respectively#\
and so we tentatively concluded that the two di}erent
Nusselt numbers observed resulted from there being two
solutions\ with these two di}erent ~ow patterns\ each
with a di}erent Nusselt number[

Examination of the two patterns in Fig[ 4 shows that
one can be obtained from the other\ simply by rotating
the ~ow _eld through 079> about the centre of the cell[
Thus the two ~ow _elds are not really independent[ This
was con_rmed when it was discovered that the cold!face
Nusselt number of one solution was essentially equal to
the hot!face Nusselt number of the other[ This being
the case\ one can get an improved computed cold!face
Nusselt number from the hot!face Nusselt number
obtained with the more re_ned 59×59×17 grid] this

Fig[ 4[ Velocity plot at the symmetry plane of the ~ow!_elds computed at 8 � 9> and Ra � 094[ The upper part "a# was computed
using a 04×04×6 grid size\ and the lower part "b# using a 29×29×03 grid size[

gave Nu � 2[822\ which compares favourably with
the Nu � 2[8 mode experimental value of Nu �
2[83829[924[ At the same time the cold!face Nusselt
number obtained with the 59×59×17 grid was 2[434\
which compares favourably with the Nu � 2[4 mode
experimental value of Nu � 2[40929[942[ Interestingly\
the average of the cold!face and hot!face Nusselt numbers
is the same for both ~ow patterns^ based on the
59×59×17 grid\ it is Nu � 2[628[ Since in the adiabatic
side!wall boundary condition case the two Nusselt num!
bers have to be equal\ the experimental observation of
two Nusselt numbers at Ra � 094 may be an artifact of
the LTP boundary condition used in the present exper!
iments[

Neither of the two ~ow _elds follows the lines of any
~ow!_eld that has been previously reported[ It is clear
from Fig[ 4 that the ~ow is fully three!dimensional\ in
the sense that very substantial amounts of ~ow has to
come into play from the third dimension in order to
satisfy continuity[ Since the two _elds are so closely!
related\ it is really only necessary to describe one of them[
Examining the ~ow!_eld shown in Fig[ 4a\ one _nds that\
after falling down along the two walls not seen in the
drawing "because they are in front of and behind the
plane of the drawing#\ the ~ow merges at an o}!centre
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location on the hot face and then splits into two com!
ponents[ One rises up the right hand side!wall before
going o} into the third dimension for its descent down
the unseen side!walls\ in the process forming a small eddy
in the upper right hand corner[ The other ~ow component
also rises\ but only halfway up the cavity\ at which point
it makes a sharp right turn and continues into a second\
larger eddy that encompasses the upper left hand corner
of the cell\ at the same time delivering ~uid out into the
third direction\ for its descent down the unseen side!
walls[

We obtained the two di}erent ~ow patterns "or modes#
on changing the grid size\ but in the real situation the
initial conditions will almost certainly decide which mode
will be observed[ This is what was found by Gomiciaga
et al[ ð08Ł\ who made a detailed study of the e}ect of
initial conditions*in particular\ the starting temperature
distribution*on the ~ow pattern[ In our simulations\ we
assumed the initial air temperature was uniformly Tm\
the average of the two plate temperatures\ and because
of the symmetry of this condition\ some extraneous
factor\ like a round!o} error at an early point in the
convergence process\ will decide which ~ow pattern will
emerge[ In practice\ however\ the starting temperature
pro_le will be biassed toward one plate or the other\ and
this will almost certainly be the deciding factor[

This latter observation could explain why we found
that the mean temperature Tm was so important in de!
ciding which mode would be observed[ In the exper!
iments\ the particular Ra of 094\ was approached by rais!
ing the pressure in the pressure vessel[ This would bring
in a slug of air at a temperature slightly above room
temperature\ or about 299 K\ from the University|s com!
pressed air line\ changing the tank temperature to that
temperature for a short period[ During this period\ the
air would bleed into the cubical cavity[ This slug of air
could be less than or greater than Tm\ depending on
the Tm setting\ so that\ in a relative sense\ the initial
temperature distribution would be strongly e}ected by
the value of Tm[ For one of the two nominal setting
of Tm\ namely Tm � 187 K\ the cubical cavity initially
contained air above the mean temperature\ and for the
other setting\ of Tm � 297 K\ the cavity initially con!
tained air decidedly below the mean temperature[ These
predictions are in keeping with the experimental _nding
that all of the Tm � 297 K settings produced the Nu � 2[8
mode and all but one of the Tm � 187 K settings produced
the Nu � 2[4 mode[

Turning now to the Nu vs Ra relation at 8 � 9> in Fig[
3a\ the data points at Ra � 097\ 096\ 095\ and the 2[8 mode
point at Ra � 094\ were found to be _tted to within 0[5)
by

Nu � 9[0083Ra9[2910 "2#
while the data points at Ra � 093\ 3×093 and the 2[4
mode point at Ra � 094 are _tted to within 9[5) by the
equation

Nu � 0¦1[4024×09−4Ra "3#

There is a clear change in slope around Ra � 094\ which\
interestingly\ is where there are two stable solutions[
There may be a transition around there from one pattern
to another[

Also shown in Fig[ 3a is a plot of the multi!purpose\
engineering equation recommended by Raithby and
Hollands ð10Ł for the {heated!from!below| enclosure of
arbitrary cross!section and Prandtl number[ In this equa!
tion\ Nu depend on the cavity cross!section only through
the critical Rayleigh number Rac for the cavity\ which\
for the present case of the square cross!section with LTP
side!walls is Rac � 5863[ The agreement is about as good
as one might expect from using such a multi!purpose
equation[ One feature may however be noted] the multi!
purpose equation has the larger Ra asymptote
Nu � 9[9444Ra0:2[ Since the data and the equation appear
to be roughly asymptotic to each other at high Ra\ we
conclude that the data are not inconsistent with there
being a one third slope asymptote at high Ra[ Moreover
it may be speculated that Nu may approach that for layer
of ~uid heated from below and of in_nite horizontal
extent^ in other words\ at very high Ra\ the presence of
the side!walls is inconsequential[

2[2[ Results for 8 � 34>

Plotted in Fig[ 3b\ the data for the 34> angular setting
do not tend to fall along a single line on a log!log plot\
at least not for the whole range in Ra[ On the other hand
the three data point at Ra � 095\ 096 and 097 fall very
close "within 9[1)# to the straight line

Nu � 9[0381Ra9[1844 "4#

while the three data points at Ra � 093\ 3×093 and 094

are closely _tted "within 9[1)# by

Nu � 9[96298Ra9[2247 "5#

One very interesting observation that can be made about
these results is that with the exceptions of Ra � 094 and
8 � 9>\ at any given Ra except 094\ the Nusselt number
at 8 � 34> is greater than that at either 8 � 9> or 8 � 89>[
This is contrary to the various angular scaling laws that
have been recommended ð19Ł[ It is also di}erent from
what Kuyper et al[ ð04Ł "and other workers cited by them#
found for 1D ~ow in a square cavity with adiabatic side!
walls^ they found that for Ra ¾ 1[66×094\ Nu at 8 � 34>
is indeed greater than that at 8 � 89>\ but for
Ra − 1[66×094\ they found Nu at 8 � 34> to be less than
that at 8 � 89>[ For example\ at Ra � 096\ Kuyper et al[
ð04Ł found the Nu at 8 � 34> to be about 7) less than
the corresponding value at 8 � 89>\ while the present
data show the Nu at 8 � 34> to be 23[6) greater than
the corresponding value at 8 � 89>[ Similar di}erences
are found with the square!cavity experimental data of
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Hamady et al[ ð8Ł[ The di}erences in the angular e}ects
are larger by a factor of about 29 than the experimental
errors\ and must therefore be attributable to the di}erent
shapes of cell "square vs cubic# and the di}erent thermal
boundary conditions[

3[ Procedures for CFD simulations

Workers wishing to compare these results to the pre!
dictions of their CFD code are advised to follow certain
recommendations relating to ~uid property values\ which
are based upon the _ndings of Leong et al[ ð01Ł[ These
workers carried out simulations for Ra � 39 999 at all
three angular settings\ using a commercial 2D CFD code[
They found that treating the ~uid properties as invariant
with temperature "and making the Boussinesq approxi!
mation# gave results close to the measured results] non!
etheless\ at two of the three angular settings\ the di}er!
ence between the simulated and measured Nusselt
numbers was greater than the 84) con_dence limits\ and
yet such a di}erence would be expected only one out of
twenty times[ The CFD simulations were repeated\ this
time with the code taking into account the variation of
k\ m\ b\ and r with temperature[ This gave much closer
agreement\ the average di}erence in the Nu being 9[3)
and the maximum di}erence "occurring at 8 � 9># being
9[44)[ None of the three tests had the di}erence greater
than the 84) con_dence limits[

That a variable!property code is needed to obtain
results within the experimental range 08 out of 19 times
means that the actual temperatures\ pressures and dimen!
sions used in the code have to match those in the exper!
iment[ The temperature conditions in the 07 measure!
ments that were used in the present experiments varied
somewhat\ but if one were to do the simulations at the
average of the 07 temperature settings\ this should give
an accurate value to compare to the measured Nusselt
number[ "The alternative is to do 07 simulations and
average the resultant Nusselt numbers\ but this would
needlessly require many simulations[# Also\ the cavity
dimension and the pressure should match those of the
experiments[ Thus we recommend that CFD simulations
be carried out in a primitive variable formulation with
Tc � 299 K\ Th � 296 K and L � 9[0161 m\ and the pres!
sure P equal to that which will give the desired Rayleigh
number[ In this latter process\ the k\ m\ b and cp in the
de_ning equation for Ra should be evaluated at Tm and
P\ and the ideal gas law should be used to evaluate r at
the Tm and the pressure in question[ Essentially any of the
literature equations that model the air property!variation
may be used[ That is\ provided that for the Rayleigh
number evaluation\ one uses these same literature equa!
tions to evaluate the properties at Tm and P\ the result

should be independent of which equations were actually
chosen[

4[ Conclusions

At each of the three values of the inclination angle 8\
Table 0 gives experimental values of the average cold!
plate Nusselt number at Rayleigh numbers running up
to 097\ for the benchmark problem de_ned by Leong et
al[ ð01Ł namely the di}erentially!heated\ air!_lled cubical
cavity having a linear temperature distribution from the
cold to the hot isothermal plates\ as shown in Fig[ 0[
The Table includes the relevant 84) con_dence!limit
uncertainties in the quantities\ which are typically about
0) of the Nusselt number[ These con_dence limits have
been established using well!established methods for
assessing experimental error\ and they have been vali!
dated by comparing the measured Nusselt number with
essentially exact CFD solutions obtainable at low Ra
"Ra � 39 999#[ It is recommended that workers interested
in testing their codes against these data should do their
simulations using primitive variables and at the exper!
imental conditions\ in a non!Boussinesq simulation that
lets the air properties vary from point to point\ according
to the local temperature[ By following these steps\ one
should get a value that lies within the noted con_dence
limits\ 08 times out of 19[

At Ra � 094 and 8 � 9>\ there are two steady state
solutions to the governing equations\ each having a
di}erent cold!face Nusselt number\ and this is why two
Nusselt number values are given at this Rayleigh number
in Table 0[ Which solution "or mode# arises in practice
appears to depend on the assumed initial temperature
pro_le[ The rather complex\ fully!2D ~ow _elds in the
two modes are more!or!less images of each other\ so that
when one of the two Nusselt numbers applies at the cold!
face\ the other applies at the hot face\ and vice!versa[
This bistable condition was not observed at any of the
other Rayleigh number!angular settings^ if they do exist
at the other settings tested\ the di}erence in their cor!
responding Nusselt numbers must be less than the above!
stated accuracy of the experiments[

For the same Rayleigh number\ the observed Nusselt
number at 8 � 34> was found to generally exceed the
corresponding Nusselt number values at both 8 � 9> and
8 � 89> for all cases except the heated from below case
at Ra � 094[ This rather unexpected result is "over most
of the relevant Rayleigh number range# di}erent from
what has previously been found for the 1D square cavity
with adiabatic side!walls[

It is recognized that experimental results at Rayleigh
numbers greater than 097 are required for testing tur!
bulence models[ Now that the physical!nature of a suit!
able benchmark problem has been demonstrated\
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measurements at higher Ra would seem to be a worthy
subject for further experimental work[
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